An Introduction to the Kalman Filter

نویسندگان

  • Greg Welch
  • Gary Bishop
چکیده

In 1960, R.E. Kalman published his famous paper describing a recursive solution to the discrete-data linear filtering problem. Since that time, due in large part to advances in digital computing, the Kalman filter has been the subject of extensive research and application, particularly in the area of autonomous or assisted navigation. The Kalman filter is a set of mathematical equations that provides an efficient computational (recursive) means to estimate the state of a process, in a way that minimizes the mean of the squared error. The filter is very powerful in several aspects: it supports estimations of past, present, and even future states, and it can do so even when the precise nature of the modeled system is unknown. The purpose of this paper is to provide a practical introduction to the discrete Kalman filter. This introduction includes a description and some discussion of the basic discrete Kalman filter, a derivation, description and some discussion of the extended Kalman filter, and a relatively simple (tangible) example with real numbers & results. 1. [email protected], http://www.cs.unc.edu/~welch 2. [email protected], http://www.cs.unc.edu/~gb Welch & Bishop, An Introduction to the Kalman Filter 2 1 The Discrete Kalman Filter In 1960, R.E. Kalman published his famous paper describing a recursive solution to the discretedata linear filtering problem [Kalman60]. Since that time, due in large part to advances in digital computing, the Kalman filter has been the subject of extensive research and application, particularly in the area of autonomous or assisted navigation. A very “friendly” introduction to the general idea of the Kalman filter can be found in Chapter 1 of [Maybeck79], while a more complete introductory discussion can be found in [Sorenson70], which also contains some interesting historical narrative. More extensive references include [Gelb74; Grewal93; Maybeck79; Lewis86; Brown92; Jacobs93]. The Process to be Estimated The Kalman filter addresses the general problem of trying to estimate the state of a discrete-time controlled process that is governed by the linear stochastic difference equation , (1.1) with a measurement that is . (1.2) The random variables and represent the process and measurement noise (respectively). They are assumed to be independent (of each other), white, and with normal probability distributions , (1.3) . (1.4) In practice, the process noise covariance and measurement noise covariance matrices might change with each time step or measurement, however here we assume they are constant. The matrix in the difference equation (1.1) relates the state at the previous time step to the state at the current step , in the absence of either a driving function or process noise. Note that in practice might change with each time step, but here we assume it is constant. The matrix B relates the optional control input to the state x. The matrix in the measurement equation (1.2) relates the state to the measurement zk. In practice might change with each time step or measurement, but here we assume it is constant. The Computational Origins of the Filter We define (note the “super minus”) to be our a priori state estimate at step k given knowledge of the process prior to step k, and to be our a posteriori state estimate at step k given measurement . We can then define a priori and a posteriori estimate errors as x R ∈ xk Axk 1 – Buk 1 – wk 1 – + + = z R ∈ zk H xk vk + = wk vk p w ( ) N 0 Q , ( ) ∼ p v ( ) N 0 R , ( ) ∼ Q R n n × A k 1 – k A n l × u R ∈ m n × H H x̂k R ∈ x̂k R n ∈ zk ek xk x̂k , and – ≡ ek xk x̂k. – ≡ UNC-Chapel Hill, TR 95-041, March 1, 2004 Welch & Bishop, An Introduction to the Kalman Filter 3 The a priori estimate error covariance is then , (1.5) and the a posteriori estimate error covariance is . (1.6) In deriving the equations for the Kalman filter, we begin with the goal of finding an equation that computes an a posteriori state estimate as a linear combination of an a priori estimate and a weighted difference between an actual measurement and a measurement prediction as shown below in (1.7). Some justification for (1.7) is given in “The Probabilistic Origins of the Filter” found below. (1.7) The difference in (1.7) is called the measurement innovation, or the residual. The residual reflects the discrepancy between the predicted measurement and the actual measurement . A residual of zero means that the two are in complete agreement. The matrix K in (1.7) is chosen to be the gain or blending factor that minimizes the a posteriori error covariance (1.6). This minimization can be accomplished by first substituting (1.7) into the above definition for , substituting that into (1.6), performing the indicated expectations, taking the derivative of the trace of the result with respect to K, setting that result equal to zero, and then solving for K. For more details see [Maybeck79; Brown92; Jacobs93]. One form of the resulting K that minimizes (1.6) is given by1

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fixed-point FPGA Implementation of a Kalman Filter for Range and Velocity Estimation of Moving Targets

Tracking filters are extensively used within object tracking systems in order to provide consecutive smooth estimations of position and velocity of the object with minimum error. Namely, Kalman filter and its numerous variants are widely known as simple yet effective linear tracking filters in many diverse applications. In this paper, an effective method is proposed for designing and implementa...

متن کامل

Implementation of a Low- Cost Multi- IMU by Using Information Form of a Steady State Kalman Filter

In this paper, a homogenous multi-sensor fusion method is used to estimate the trueangular rate and acceleration with a combination of four low cost (< 10$) MEMS Inertial MeasurementUnits (IMU). An information form of steady state Kalman filter is designed to fuse the output of four lowaccuracy sensors to reduce the noise effect by the square root of the number of sensors. A hardware isimplemen...

متن کامل

Improvement of Navigation Accuracy using Tightly Coupled Kalman Filter

In this paper, a mechanism is designed for integration of inertial navigation system information (INS) and global positioning system information (GPS). In this type of system a series of mathematical and filtering algorithms with Tightly Coupled techniques with several objectives such as application of integrated navigation algorithms, precise calculation of flying object position, speed and at...

متن کامل

Time Delay and Data Dropout Compensation in Networked Control Systems Using Extended Kalman Filter

In networked control systems, time delay and data dropout can degrade the performance of the control system and even destabilize the system. In the present paper, the Extended Kalman filter is employed to compensate the effects of time delay and data dropout in feedforward and feedback paths of networked control systems. In the proposed method, the extended Kalman filter is used as an observer ...

متن کامل

A New Adaptive Extended Kalman Filter for a Class of Nonlinear Systems

This paper proposes a new adaptive extended Kalman filter (AEKF) for a class of nonlinear systems perturbed by noise which is not necessarily additive. The proposed filter is adaptive against the uncertainty in the process and measurement noise covariances. This is accomplished by deriving two recursive updating rules for the noise covariances, these rules are easy to implement and reduce the n...

متن کامل

Mobile Robot Navigation Error Handling Using an Extended Kalman Filter

Obviously navigation is one of the most complicated issues in mobile robots. Intelligent algorithms are often used for error handling in robot navigation. This Paper deals with the problem of Inertial Measurement Unit (IMU) error handling by using Extended Kalman Filter (EKF) as an Expert Algorithms. Our focus is put on the field of mobile robot navigation in the 2D environments. The main chall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994